Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.1. Introduction to Relations

8.2 Properties of Relations

8.3 Equivalence Relations

1

Watch this lecture and download the slides

Course Page: http://www.jarrar.info/courses/DMath/

More Online Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on (but not limited to) to chapter 8 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.2 Properties of Relations

In this lecture:

Part 1: Properties: Reflexivity, Symmetry, Transitivity

☐ Part 2: Proving Properties of Relations

☐ Part 3: Transitive Closure

3

Reflexivity تناظر

R is reflexive \Leftrightarrow for

 \Leftrightarrow for all x in A, $(x, x) \in R$.

R is Reflexive: Each element is related to itself.

علاقة ثنائية على مجموعة ما، وكل عنصر في المجموعة مرتبط بنفسه في اطار هذه العلاقة

في إطار هذه العلاقة. R is not reflexive: there is an element x in A such that x R x [that is, such that $(x, x) \notin R$].

Examples:

Likes?MemberOf?BrotherOf?LocatedIn?PartOf?SonOf?Kills?SubSetOf?FatherOf?FreindOf?SameAS?RelativeOf?

4)

Symmetry

تماثل

R is symmetric \Leftrightarrow

for all x and y in A, **if** $(x, y) \in R$ then $(y, x) \in R$.

R is Symmetric: If any one element is related to any other element, then the second is related to the first.

R is not Symmetric: there are elements x and y in A such that x R y but y R x [that is, such that $(x, y) \in R$ but $(y,x) \notin R$].

Examples:

Likes? MemberOf? BrotherOf?
LocatedIn? PartOf? SonOf?
Kills? SubSetOf? FatherOf?
FreindOf? SameAS? RelativeOf?

5

Transitivity

R is transitive

 $\Leftrightarrow \text{ for all } x, y \text{ and } z \text{ in } A, \textbf{if } (x, y) \in R \text{ and } (y, z) \in R$ $\text{then } (x, z) \in R.$

R is Transitive: If any one element is related to a second and that second element is related to a third, then the first element is related to the third.

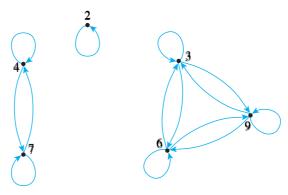
R is not transitive: there are elements x,y and z in A such that xRy and yRz but $x \not\in z$ [that is, such that $(x,y) \in R$ and $(y,z) \in R$ but $(x,z) \notin R$].

Examples:

Likes? MemberOf? BrotherOf?
LocatedIn? PartOf? SonOf?
Kills? SubSetOf? FatherOf?
FreindOf? SameAS? RelativeOf?

Example

Let $A = \{2,3,4,6,7,9\}$ and define a relation R on A as: For all $x, y \in A$, $xRy \Leftrightarrow 3l(x-y)$.

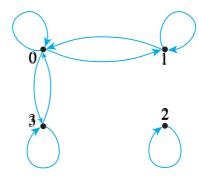


Is R Reflexive?✓ Symmetric?✓ Transitive?✓

Exercise

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

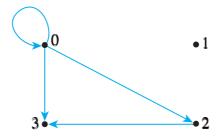
Is R Reflexive? ✓ *Symmetric?* ✓ *Transitive?* 🗷



Exercise

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 2), (0, 3), (2, 3)\}$

Is R Reflexive? ★ Symmetric? ★ Transitive? ✓



9

Exercise

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0,1),(2,3)\}$

Is R Reflexive?

✓ Symmetric?

✓ Transitive?

✓

0 • → • 1

3 • ← 2

Remark that the transitivity condition is vacuously true for T. To see this, observe that the transitivity condition says that $\forall x,y,z\in A$, if $[(x,y)\in T \land (y,z)\in T]$ then $[(x,z)\in T]$

 $(x,y)\in I$ $(y,z)\in I$ $[(x,z)\in I]$

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.2 Properties of Relations

In this lecture:

☐ Part 1: Properties: Reflexivity, Symmetry, Transitivity

□ Part 2: **Proving Properties of Relations**

☐ Part 3: Transitive Closure

11

Proving Properties on Relations on Infinite Sets

Until now we discussed relation on Finite Sets

Next, we discussed relation on infinite Sets

To prove a relation is reflexive, symmetric, or transitive, first write down what is to be proved, in **First Order Logic**.

For instance, for symmetry $\forall x, y \in A$, if x R y then y R x.

Then use **direct methods** of proving

Properties of Equality

Define a relation R on \mathbf{R} (the set of all real numbers) as follows: For all real numbers x and y. $x R y \Leftrightarrow x = y$.

Is R Reflexive? Symmetric? Transitive?

13

Properties of Less Than

Define a relation R on \mathbf{R} (the set of all real numbers) as follows: For all $x, y \in R$, $x \in R$ $x \in X$

Is R Reflexive? Symmetric? Transitive?

Solution

R is not reflexive: R is reflexive if, and only if, $\forall x \in \mathbb{R}$, x R x. By definition of R, this means that $\forall x \in \mathbb{R}$, $x \in \mathbb{R}$ such that $x \neq x$. As a counterexample, let x = 0 and note that $0 \neq 0$. Hence R is not reflexive.

R is not symmetric: R is symmetric if, and only if, $\forall x, y \in \mathbf{R}$, if x R y then y R x. By definition of R, this means that $\forall x, y \in \mathbf{R}$, if x < y then y < x. But this is false: $\exists x, y \in \mathbf{R}$ such that x < y and y < x. As a counterexample, let x = 0 and y = 1 and note that 0 < 1 but 1 < 0. Hence R is not symmetric.

R is transitive: R is transitive if, and only if, for all $x, y, z \in \mathbf{R}$, if x R y and y R z then x R z. By definition of R, this means that for all $x, y, z \in \mathbf{R}$, if x < y and y < z, then x < z. But this statement is true by the transitive law of order for real numbers (Appendix A, T18). Hence R is transitive.

Properties of Congruence Modulo 3

Define a relation T on \mathbb{Z} (the set of all integers) as follows: For all integers m and n, $m T n \Leftrightarrow 3 | (m-n)$.

Is R <u>Reflexive</u>? Symmetric? Transitive?

For all $m \in \mathbb{Z}$, $3 \mid (m-m)$.

Suppose m is a particular but arbitrarily chosen integer.

[We must show that m T m.]

Now, m-m=0.

But $3 \mid 0 \text{ since } 0 = 3.0.$

Hence 3|(m-m).

Thus, by definition of T, mT m

[as was to be shown].

15

Properties of Congruence Modulo 3

Define a relation T on \mathbb{Z} (the set of all integers) as follows: For all integers m and n, $m T n \Leftrightarrow 3l(m-n)$.

Is R Reflexive? <u>Symmetric</u>? Transitive?

For all $m, n \in \mathbb{Z}$, if $3 \mid (m-n)$ then $3 \mid (n-m)$.

Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition m T n.

[We must show that n T m.]

By definition of T, since m T n then $3 \mid (m - n)$. By definition of "divides," this means that m - n = 3k, for some integer k.

Multiplying both sides by -1 gives n - m = 3(-k). Since -k is an integer, this equation shows that $3 \mid (n - m)$. Hence, by definition

of T, n T m [as was to be shown].

Properties of Congruence Modulo 3

Define a relation T on \mathbb{Z} (the set of all integers) as follows: For all integers m and n, $m T n \iff 3 | (m-n)$.

Is R Reflexive?

Symmetric?

Transitive?

For all $m, n \in \mathbb{Z}$, if $3 \mid (m-n)$ and $3 \mid (n-p)$ then $3 \mid (m-p)$.

Suppose m, n, and p are particular but arbitrarily chosen integers that satisfy the condition m T n and n T p. [We must show that m T p.] By definition of T, since m T n and n T p, then 3l(m-n) and 3l(n-p). By definition of "divides," this means that m-n=3r and n-p=3s, for some integers r and s. Adding the two equations gives (m-n)+(n-p)=3r+3s, and simplifying gives that m-p=3(r+s). Since r+s is an integer, this equation shows that 3l(m-p). Hence, by definition of T, m T p [as was to be shown].

17

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.2 Properties of Relations

In this lecture:

☐ Part 1: Properties: Reflexivity, Symmetry, Transitivity

☐ Part 2: Proving Properties of Relations

■Part 3: Transitive Closure

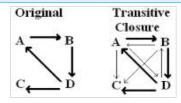
The Transitive Closure of a Relation

The **smallest** transitive relation that contains the relation.

• Definition

Let A be a set and R a relation on A. The **transitive closure** of R is the relation R^t on A that satisfies the following three properties:

- 1. R^t is transitive.
- 2. $R \subseteq R^t$.
- 3. If *S* is any other transitive relation that contains *R*, then $R^t \subseteq S$.



19

Exercise

Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as: $R = \{(0, 1), (1, 2), (2, 3)\}.$

Find the transitive closure of R.

 $R^{t} = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}.$

